54 research outputs found

    Predicting the Activation States of the Muscles Governing Upper Esophageal Sphincter Relaxation and Opening

    Get PDF
    Copyright © 2016 the American Physiological SocietyThe swallowing muscles that influence upper esophageal sphincter (UES) opening are centrally controlled and modulated by sensory information. Activation and deactivation of neural inputs to these muscles, including the intrinsic cricopharyngeus (CP) and extrinsic submental (SM) muscles, results in their mechanical activation or deactivation, which changes the diameter of the lumen, alters the intraluminal pressure, and ultimately reduces or promotes flow of content. By measuring the changes in diameter, using intraluminal impedance, and the concurrent changes in intraluminal pressure, it is possible to determine when the muscles are passively or actively relaxing or contracting. From these “mechanical states” of the muscle, the neural inputs driving the specific motor behaviors of the UES can be inferred. In this study we compared predictions of UES mechanical states directly with the activity measured by electromyography (EMG). In eight subjects, pharyngeal pressure and impedance were recorded in parallel with CP- and SM-EMG activity. UES pressure and impedance swallow profiles correlated with the CP-EMG and SM-EMG recordings, respectively. Eight UES muscle states were determined by using the gradient of pressure and impedance with respect to time. Guided by the level and gradient change of EMG activity, mechanical states successfully predicted the activity of the CP muscle and SM muscle independently. Mechanical state predictions revealed patterns consistent with the known neural inputs activating the different muscles during swallowing. Derivation of “activation state” maps may allow better physiological and pathophysiological interpretations of UES function

    Modulation of Upper Esophageal Sphincter (UES) Relaxation and Opening During Volume Swallowing

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s00455-016-9744-4". This author accepted manuscript is made available following 12 month embargo from date of publication (17 Aug 2016) in accordance with the publisher's copyright policy.UES opening occurs following cricopharyngeus deactivation and submental muscle contraction causing hyolaryngeal elevation and UES distraction. During impedance manometry, the inverse of impedance (admittance) can be used to measure bolus presence and infer UES opening. We hypothesized that the temporal relationship between UES relaxation, opening and hyolaryngeal elevation would change with increasing bolus volume. Simultaneous intramuscular cricopharyngeal (CP) electromyography (EMG), surface submental EMG (SM-EMG), and high-resolution impedance manometry were recorded in eight (aged 27 ± 7 years, 5 M) healthy volunteers, while swallowing 0.9 % saline boluses of 2, 5, 10, and 20 ml. Data were exported and analyzed via Matlab. Statistical analysis comprised repeated measures one-way ANOVA and Pearson correlation. A P value of <0.05 was considered significant. Duration of CP deactivation increased at 20 ml volume (P < 0.001). UES relaxation and opening increased with increasing bolus volume (P < 0.001); however, overall duration of SM activation did not change. As UES opening occurs progressively earlier with increasing volumes, peak SM-EMG activity occurs relatively later (P < 0.001) and shifts from occurring before to following peak UES distention. During healthy swallowing, there is sensory modulation of cricopharyngeal and submental muscle activity. Intrabolus pressures, transmitted from the tongue base and pharynx, play a progressively more important role in sphincter opening with increasing volume. The findings may explain why some healthy elderly and patients with oropharyngeal dysphagia have difficulty swallowing larger while tolerating smaller bolus volumes

    The Conceptualization and Measurement of Comorbidity: A Review of the Interprofessional Discourse

    Get PDF
    Copyright © 2013 Salimah H. Meghani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background. Chronic medical conditions often occur in combination. Understanding underlying mechanisms causing diseases and their interactions may make it possible to address multiple complex conditions with single or consolidated treatment approaches and improve patients’ health outcomes while reducing costs. Objectives. We present a synthesis of the current interprofessional discourse on the issues surrounding comorbidities. Methods. A targeted review of the literature was conducted using published editorials, commentaries, and review articles. Results. Errors in conceptualization and measurement plague our current understanding of comorbidities. Two potential paths to generating knowledge involve the use of etiological or epidemiological approach. An etiological approach investigates the risk factors and underlying mechanisms potentially leading to consolidation of diagnosis and treatments. Because of the rudimentary stage of knowledge development in this area, this approach will require time and significant research investments. In contrast, the epidemiological approach relies on statistical identification of disease entities that cooccur beyond random chance; this approach carries an accompanying risk of diagnostic and treatment proliferation. Discussion. The concept of comorbidity, its nature, and measurement is in need of meaningful debate by the scientific and clinical communities. Recommendations in the domains of conceptualization, research, and measurement are discussed

    Precision health: A nursing perspective

    Get PDF
    Precision health refers to personalized healthcare based on a person's unique genetic, genomic, or omic composition within the context of lifestyle, social, economic, cultural and environmental influences to help individuals achieve well-being and optimal health. Precision health utilizes big data sets that combine omics (i.e. genomic sequence, protein, metabolite, and microbiome information) with clinical information and health outcomes to optimize disease diagnosis, treatment and prevention specific to each patient. Successful implementation of precision health requires interprofessional collaboration, community outreach efforts, and coordination of care, a mission that nurses are well-positioned to lead. Despite the surge of interest and attention to precision health, most nurses are not well-versed in precision health or its implications for the nursing profession. Based on a critical analysis of literature and expert opinions, this paper provides an overview of precision health and the importance of engaging the nursing profession for its implementation. Other topics reviewed in this paper include big data and omics, information science, integration of family health history in precision health, and nursing omics research in symptom science. The paper concludes with recommendations for nurse leaders in research, education, clinical practice, nursing administration and policy settings for which to develop strategic plans to implement precision health

    Hyperglycemia and Cancer: A State-of-the-Science Review

    No full text
    Problem Identification: Hyperglycemia can increase the risk for adverse events and outcomes in patients undergoing treatment for cancer. The purposes of this state-of-the-science review were to explore the complexity of hyperglycemia in patients with cancer and to analyze physiologic mechanisms and outcomes in individuals with or at risk for cancer. Literature Search: PubMed® and the Cochrane Library databases were searched, and 95 articles were included. Findings were evaluated for their methods and analyses. Studies assessed as methodologically flawed were not included. Data Evaluation: The synthesis of the articles provided the evidence for describing normal and glycemic pathways. Hyperglycemia in patients with cancer was explored through chronic inflammatory mechanisms that lead to increased risks for adverse events and outcomes. Synthesis: This article discusses normal glucose regulation and hyperglycemic pathways, hyperglycemia in patients with cancer, hyperglycemia and cancer-related inflammation, and outcomes (e.g., infections, mortality, symptoms). Implications for Research: Understanding the contributors to and consequences of hyperglycemia can guide the development of screening tools to predict which individuals are at the greatest risk for hyperglycemic episodes prior to starting cancer therapies. Research can lead to glycemic guidelines specific to patients with cancer for better outcomes
    • …
    corecore